# Technical Lessons Learned - FMTT Demo: Neutron Multiplicity Counter

**Presented by** 

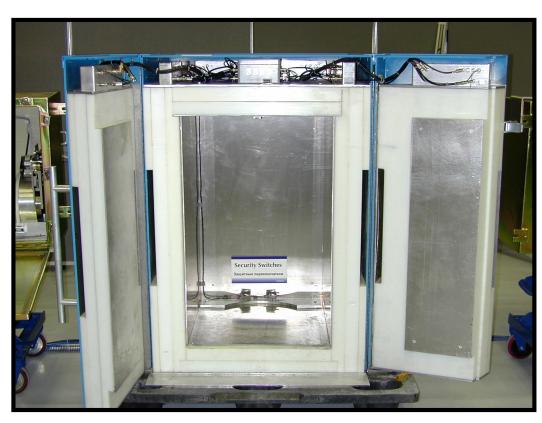
Douglas R. Mayo

**September 21, 2000** 



#### **Lessons from FMTT Demo**

- Overview
- Repairs, Modifications and System Failures
  - Neutron Multiplicity Counter
  - Portable Shift Register


- Optimized System
  - Optimized Neutron Multiplicity Counter
  - Software Fixes
  - Integrated Neutron & Gamma-Ray System

## **Attributes: Neutron Measurements**

| <b>Attribute</b> | Method                    | Specific Mechanisms                       |
|------------------|---------------------------|-------------------------------------------|
| Pu Mass          | NMC & Pu600               | — <sup>240</sup> Pu-effective + isotopics |
| Absence of Oxide | NMC & Pu900               | —Alpha > 0.5 and 870.8 keV line present   |
| Symmetry         | NMC & Symmetr<br>Analyzer | y —eight detector banks confirm symmetry  |



# **Neutron Multiplicity Counter**



- Commercial coincidence counter designed for shipper/ receiver measurements.
- Adequate system for proof-of-principle.
- A fully optimized counter would require shorter count times and produce better multiplicity results.



## Portable Shift Register (PSR-B)





## NMC & PSR-B Repairs

- Neutron Coincidence/Multiplicity Counters are Very Robust Replaced one Amptek and desiccant after 10+ years in storage.
- Portable Shift Register B

Shipped with incorrect resistance chain in High Voltage Power Supply.



### **NMC Modifications**

Active Splitter

Necessary to drive longer cable length.

Derandomizer

Reduction in overall deadtime of the system.

Symmetry Analyzer

System was modified to give 8 outputs for symmetry Scalars.



## **NMC & PSR-B Failures**

NMC - Amptek board failure.

Quickly replaced with spare.

• PSR - B

Inherent failure mode from serial port noise in startup.

Fixed procedurally by bringing entire system up at the same time.



## **System Optimization**

#### Optimized NMC

Higher efficiency and Intelligent Shift Register would result in reduced count time.

Able to spend more time on different measurements (i.e. authentication....) or shortened day in High-bay.



# Neutron Multiplicity Counter: A Fully Optimized System



- Detector head with junction box
- Computer
- Multiplicity shift register and power supplies



# **System Optimization**

Software improvements

HV ramp-up delay.

Improve error handling capabilities.

Translate output into Russian and English.

Remove debugging comments.

Change to sample statistics from theoretical.



# **System Optimization**

Co-location of neutron and gamma-ray system.

Reduction in overall count time and improved accuracy.

- Allow for troubleshooting and integration into AMS/IB.
- Improve power shutdown so that "spikes" do not kill sensitive systems, yet protect information.